Public Judge

pjudge

Time Limit: 5 s Memory Limit: 1024 MB Total points: 100 Hackable ✓

#21655. 【PR #5】双向奔赴

الإحصائيات

小 D 和大 D 生活在一张简单无向图上。

很可惜,这张无向图马上就要变成有向图了。每条边的两种定向方式分别有一个代价,小 D 和大 D 决定找出一种定向方式,使得无论他们俩分别在哪两个点,小 D 都能走过一些有向边找到大 D,在这基础上,他们想要最小化代价总和。

输入格式

第一行一个正整数 $n$ 。

接下来 $n$ 行,每行 $n$ 个整数,其中第 $i$ 行第 $j$ 个数代表 $a_{i,j}$ ,表示定向为 $i$ 到 $j$ 的有向边的代价。如果不存在 $i,j$ 之间的边, $a_{i,j}=-1$ 。保证 $a_{i,i}=-1$ ,且 $[a_{i,j}=-1]=[a_{j,i}=-1]$。

输出格式

一行一个整数,表示最小代价。如果无解,输出 $-1$ 。

样例一

input

4
-1 3 2 -1
3 -1 7 7
5 9 -1 9
-1 6 7 -1

output

27

样例二

input

6
-1 1 2 -1 -1 -1
3 -1 4 -1 -1 -1
5 6 -1 0 -1 -1
-1 -1 0 -1 6 5
-1 -1 -1 4 -1 3
-1 -1 -1 2 1 -1

output

-1

数据范围与提示

对于 $30\%$ 的数据:保证 $n\leq 7$ 。

对于 $60\%$ 的数据:保证 $n\leq 12$ 。

对于 $80\%$ 的数据:保证 $n\leq 16$ 。

对于 $100\%$ 的数据:保证 $1\leq n\leq 18$,$-1\leq a_{i,j}\leq 10^6$。

时间限制:$\texttt{5s}$

空间限制:$\texttt{1GB}$

Discussions

About Discussions

The discussion section is only for posting: Editorials, General Discussions (problem-solving strategies, alternative approaches), and Off-topic conversations.

This is NOT for reporting issues! If you want to report bugs or errors, please use the Issues section below.

Open Discussions 0
No discussions in this category.

Issues

About Issues

If you find any issues with the problem (statement, scoring, time/memory limits, test cases, etc.), you may submit an issue here. A problem moderator will review your issue.

Guidelines:

  1. This is not a place to publish discussions, editorials, or requests to debug your code. Issues are only visible to you and problem moderators.
  2. Do not submit duplicated issues. Submitting multiple issues may cause your account to be banned.
  3. Issues must be filed in English or Chinese only.
Active Issues 0
No issues in this category.
Closed/Resolved Issues 0
No issues in this category.