Public Judge

pjudge

Time Limit: 2 s Memory Limit: 1024 MB Total points: 100

#21751. 【PR #8】养鸡

Statistics

有 $n$ 只鸡站成一排,第 $i$ 只鸡至多能吃 $a_i$ 的谷子。

有 $m$ 个波特,第 $j$ 个波特可以给第 $l_j,l_j+1,\cdots,r_j$ 只鸡喂谷子,并且它只携带了 $c_j$ 的谷子。波特不需要把携带的所有谷子都喂出去,只需要保证喂出去的谷子不超过 $c_j$ 即可。

对于每个 $i$ ,求出如果只保留满足 $l_j\le i\le r_j$ 的波特,那么最多一共能喂多少谷子。

输入格式

每个测试点的第一行是一个正整数 $T$ ,表示数据组数。每组数据的格式如下。

第一行两个正整数 $n,m$ ,分别表示鸡和波特的数量。

第二行 $n$ 个非负整数 $a_1,a_2,\cdots,a_n$ ,表示每只鸡能吃的谷子数量。

接下来 $m$ 行,第 $j$ 行三个整数 $l_j,r_j,c_j$ ,描述第 $j$ 个波特。

输出格式

对每组数据输出一行 $n$ 个非负整数,表示答案。

样例

样例输入1

1
4 3
3 3 2 2
1 2 2
3 3 3
2 2 4

样例输出1

2 5 2 0

样例2

见下发文件中的 ex_2.in/ex_2.ans

数据范围

本题采用子任务捆绑测试。

对于所有数据,保证 $1\le T\le 10^4,1\le \sum n,\sum m\le 10^5,0\le a_i\le 10^9,1\le l_j\le r_j\le n,0\le c_j\le 10^9$ 。

子任务编号 $\sum n,\sum m\le $ 特殊性质 分值
$1$ $300$ $ $ $15$
$2$ $2000$ $ $ $15$
$3$ $10^5$ $l_j=1,r_j\le r_{j+1}$ $20$
$4$ $10^5$ $l_j\le l_{j+1},r_j\le r_{j+1}$ $25$
$5$ $10^5$ $ $ $25$

Discussions

About Discussions

The discussion section is only for posting: Editorials, General Discussions (problem-solving strategies, alternative approaches), and Off-topic conversations.

This is NOT for reporting issues! If you want to report bugs or errors, please use the Issues section below.

Open Discussions 0
No discussions in this category.

Issues

About Issues

If you find any issues with the problem (statement, scoring, time/memory limits, test cases, etc.), you may submit an issue here. A problem moderator will review your issue.

Guidelines:

  1. This is not a place to publish discussions, editorials, or requests to debug your code. Issues are only visible to you and problem moderators.
  2. Do not submit duplicated issues. Submitting multiple issues may cause your account to be banned.
  3. Issues must be filed in English or Chinese only.
Active Issues 0
No issues in this category.
Closed/Resolved Issues 0
No issues in this category.