Public Judge

pjudge

Time Limit: 3 s Memory Limit: 2048 MB Total points: 7

#21896. 【PER #4】Bitset 大师

Statistics

在参加了联合省选后,你成为了 bitset 大师。因此,你决定使用 bitset 解决这样的一道题。

给定两个整数序列 $a_1, a_2, \cdots, a_n$ 与 $b_1, b_2, \cdots, b_m$($m$ 的值很小)。两个整数序列 $(x_1, x_2, \cdots, x_p)$ 与 $(y_1, y_2, \cdots, y_q)$ 是 贴贴 的,当且仅当:

  • $p = q$
  • $x_i = x_j \Longleftrightarrow y_i = y_j$,对每个 $1 \leq i,j \leq p$。

输出 $a_1, a_2, \cdots, a_n$ 有多少子序列与 $b_1, b_2, \cdots, b_m$ 贴贴。

输入格式

输入的第一行包含两个整数 $n$ 和 $m$($1 \leq n \leq 3000$,$1 \leq m \leq \min(5, n)$)。

接下来一行,包含 $n$ 个整数 $a_1, a_2, \cdots, a_n$($1 \leq a_i \leq n$)。

接下来一行,包含 $m$ 个整数 $b_1, b_2, \cdots, b_m$($1 \leq a_i \leq m$)。

输出格式

输出一行一个整数,表示答案。

样例数据

input

6 4
1 1 4 5 1 4
1 3 2 1

output

3

子任务

子任务一(1 分)

$m \leq 3$

子任务二(1 分)

$m \leq 4$

子任务三(5 分)

没有额外的限制。

Discussions

About Discussions

The discussion section is only for posting: Editorials, General Discussions (problem-solving strategies, alternative approaches), and Off-topic conversations.

This is NOT for reporting issues! If you want to report bugs or errors, please use the Issues section below.

Open Discussions 0
No discussions in this category.

Issues

About Issues

If you find any issues with the problem (statement, scoring, time/memory limits, test cases, etc.), you may submit an issue here. A problem moderator will review your issue.

Guidelines:

  1. This is not a place to publish discussions, editorials, or requests to debug your code. Issues are only visible to you and problem moderators.
  2. Do not submit duplicated issues. Submitting multiple issues may cause your account to be banned.
  3. Issues must be filed in English or Chinese only.
Active Issues 0
No issues in this category.
Closed/Resolved Issues 0
No issues in this category.